首页> 外文OA文献 >MnO2 nanoflake/polyaniline nanorod hybrid nanostructures on graphene paper for high-performance flexible supercapacitor electrodes
【2h】

MnO2 nanoflake/polyaniline nanorod hybrid nanostructures on graphene paper for high-performance flexible supercapacitor electrodes

机译:高性能柔性超级电容器电极在石墨烯纸上的MnO2纳米片/聚苯胺纳米棒混合纳米结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A facile two-step strategy is adopted to construct a free-standing composite paper of MnO nanoflake/polyaniline (PANI) nanorod hybrid nanostructures on reduced graphene oxide (RGO) for flexible supercapacitor electrode application. MnO nanoflakes are first grown on RGO paper via an electrodeposition method, followed by assembly of PANI nanorods between MnO nanoflakes by in situ polymerization using camphorsulfonic acid as a dopant. The morphology and structure of the composite paper are characterized and the electrochemical properties are systematically investigated. The interconnected PANI nanorods deposited on the interlaced MnO nanoflakes have a length of ∼100 nm and a diameter of ∼30 nm, creating plenty of open porous structures which are beneficial for ion penetration into the electrode. The RGO/MnO/PANI composite paper shows a large specific capacitance of 636.5 F g-1 at 1.0 A g-1 in 1.0 M NaSO electrolyte and excellent cycling stability (85% capacitance retention after 104 cycles). The optimized composite structure with more electroactive sites, fast ion and electron transfer, and strong structural integrity endows the ternary composite paper electrode with outstanding electrochemical performance. © The Royal Society of Chemistry 2015.
机译:采用一种简便的两步策略,在还原的氧化石墨烯(RGO)上构建了MnO纳米片/聚苯胺(PANI)纳米棒混合纳米结构的独立复合纸,用于柔性超级电容器电极应用。 MnO纳米片首先通过电沉积方法在RGO纸上生长,然后使用樟脑磺酸作为掺杂剂通过原位聚合在MnO纳米片之间组装PANI纳米棒。对复合纸的形貌和结构进行了表征,并对电化学性能进行了系统的研究。沉积在交错的MnO纳米薄片上的相互连接的PANI纳米棒的长度约为100 nm,直径约为30 nm,产生了大量的开放性多孔结构,有利于离子渗透到电极中。 RGO / MnO / PANI复合纸在1.0 M NaSO电解质中1.0 A g-1时显示出636.5 F g-1的大比电容,并具有出色的循环稳定性(104次循环后电容保持率达85%)。具有更多电活性部位,快速的离子和电子转移以及强大的结构完整性的优化复合结构使三元复合纸电极具有出色的电化学性能。 ©皇家化学学会2015。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号